
Reliable Ad-hoc On-demand Distance Vector Routing Protocol

Sandhya Khurana Neelima Gupta Nagender Aneja
Department of Computer Sc.,
University of Delhi ,
New Delhi, India
skhurana@cs.du.ac.in

Department of Computer Sc.,
University of Delhi,
New Delhi, India
ngupta@cs.du.ac.in

Department of Computer Sc.,
Tecnia Institute of Advance
Studies, New Delhi, India.
naneja@gmail.com

Abstract

Mobile Ad hoc Networks’ (MANETs) properties
present major vulnerabilities in security. The threats
considered in MANETS are due to maliciousness that
intentionally disrupt the network by using variety of
attacks and due to selfishness of node which do not
perform certain operations due to a wish to save
power. In this paper, a co-operative security scheme
called Reliable Ad hoc On-demand Distance Vector
(RAODV) routing protocol based on local monitoring
has been proposed to solve the problem of attack by
malicious node as well as selfish behavior. RAODV
behaves as AODV in the absence of attack and,
detects and isolates misbehaving nodes in the
presence of attack. Also it recovers from the attack
when a misbehaving node leaves the network or
becomes good.

1. Introduction

Ad-hoc networks [1] have been proposed to
support scenarios where no wired infrastructure
exists. They can be set up quickly where the existing
infrastructure does not meet application requirements
for reasons such as security, cost, or quality.
Examples of applications for ad hoc networks range
from military operations, emergency disaster relief to
community networking and interaction between
attendees at a meeting or students during a lecture.

In Mobile Ad hoc Networks (MANET) each node
has limited wireless transmission range, so the
routing in MANETs depends on the cooperation of
intermediate nodes. Two types of routing protocols
have been defined for ad hoc networks: Table-driven
protocol and On-demand routing protocol. Table
driven protocols are proactive in nature and consume

excessive network bandwidth. On the other hand, on
demand routing protocol exchange routing
information only when needed. Ad-hoc On demand
Distance Vector (AODV) [3] routing protocol is an
on demand routing protocol that focuses on
discovering the shortest path between two nodes with
no consideration of the reliability of a node.

The structure of an Ad-hoc network leads to some
special kinds of attacks especially attacks on the
connectedness of the network. Most ad hoc routing
protocols rely on implicit trust-your-neighbor
relationship to route packets among participating
nodes. This naive trust model allows malicious nodes
and selfish nodes to paralyze the network. Selfish
nodes do not directly damage other nodes but their
effect cannot be underestimated.

Security in the routing protocol is necessary in
order to guard against these attacks but relatively
little work has been done in securing ad hoc network
routing protocols. Secure ad hoc network routing
protocols are difficult to design, due to the high
dynamic nature of the network. Some protocols have
been proposed to secure the network from these
attacks. Some of these protocols handle attacks by
malicious nodes but not the selfish nodes and some
handle selfish nodes nicely but malicious nodes not
so nicely.

Secure Efficient Ad hoc Distance Vector routing
protocol (SEAD) [4] is based on DSDV and hence
consumes network bandwidth in exchanging routing
tables among nodes. It claim to save bandwidth but
that is only when compared with other cryptographic
schemes used to impose security but not with respect
to exchange of routing information. SEAD handles
malicious node but not selfish node.

The Security-aware Ad-hoc Routing (SAR) [5]
based on AODV introduces security metrics for path
computation and selection. Each node is assigned a

Proceedings of the International Conference on Networking, International Conference on Systems and
International Conference on Mobile Communications and Learning Technologies (ICNICONSMCL’06)
0-7695-2552-0/06 $20.00 © 2006 IEEE

trust level according to organizational hierarchies
with a shared key for each level. It does not discuss
how shared key is distributed among nodes and what
happens when a node leaves the group with shared
trust level and become malicious or selfish.

Certain protocols have been proposed to handle
the selfish nodes. “Incentives to co-operate” [6]
scheme introduces a virtual currency called Nuglets
used in every transaction. Nuglets serve as a per-hop
payment for every packet forwarding, incremented
when node forwards for others and decremented
when it sends packets for themselves. This
encourages nodes to forward the packets and
discourages them from flooding the network. The
main drawback of this approach is in difficulty of
implementing the exchange of currency making their
use difficult in practical systems.

CORE [7] handles selfish nodes but does not
handle malicious nodes nicely. It uses reputation
value for each node. Nodes monitor other nodes and,
based on promiscuous observations and expected
behavior, maintain reputation records indicating how
much other nodes in the network are trust-able.
Reputations have positive, negative and zero values.
Reputation of a node decreases when it refuses to
forward a packet. It prevents malicious nodes to deny
a service by not allowing it to advertise negatively
about other nodes. Negative advertisements are
ignored. However, it allows malicious node to stay in
the system for some time after it has shown some
positive behavior by accumulating some positive
reputation. To eliminate this problem Co-operation of
Nodes Fairness In Dynamic Ad-hoc Networks
(CONFIDANT) [8] keeps only two types of values,
negative and zero.

There is an issue regarding negative effects of
reputation system on well behaved nodes which may
wish to decrease its reputation by behaving badly to
prevent its resources being over used. CORE and
CONFIDANT require sophisticated hardware to
perform promiscuous observation. The network
hardware may have to listen and construct packets
over different radio technologies. This may not be
possible for resource-constrained devices.

In this paper, we propose a co-operative security
scheme based on local monitoring to solve the
problem of attack by malicious as well as selfish
nodes. We present “Reliable Ad-hoc On-demand
Distance Vector routing protocol (RAODV)”, an
approach to routing that incorporates reliability level
of nodes into traditional routing metrics for finding
path. RAODV is based on AODV with the
assumption that nodes cannot impersonate and all
other network conditions are good. RAODV behaves
as AODV in the absence of attack and, detects and
isolates misbehaving nodes in the presence of attack.

Also it recovers from the attack when a misbehaving
node leaves the network or becomes good. It does not
need any special type of hardware like CONFIDANT
and CORE. This protocol is simple to implement.

2. ATTACKS

Malicious nodes attack by inserting erroneous
routing updates, replaying old routing information,
changing routing updates, or advertising incorrect
routing information so that the network is not able to
provide service properly. Attacks like reducing the
amount of routing information available to other
nodes, failing to advertise certain routes or discarding
routing packets or parts of routing packets are due to
selfish behavior of a node.

Misbehaving node model as defined in [9] has
three types of selfish nodes depending upon their
extent of non-cooperation in network operations.
Selfish node of Type 1 forwards control packets but
does not forward data packets and is saving a
significant portion of its battery life by neglecting
data packets. Selfish node of Type 2 uses energy
only for its communication and neither forwards
controls packets nor data packets. Selfish node of
Type 3 depends on energy level. Let E be initial
maximum energy of node. When energy of the node
falls within (E, T1) the node behaves properly and
execute both routing functions and packet
forwarding. When energy falls in (T1, T2), the node
behaves like selfish node of Type 1 and thus disables
data packet forwarding. If energy falls within (T2, 0)
then node behaves like selfish node of Type 2. With
in a limited time interval the node’s energy is set back
to the initial value.

In our protocol, we aim at protecting the network
against attacks by selfish nodes and malicious nodes
exhibiting the following misbehavior:

1. BLACK HOLE attack is an active attack in
which node responds positively to a request
for a shortest route, even though it does not
have a valid route to the destination node.
The node is called BLACK NODE. Since a
black node does not have to check its
routing table it is the first one to respond to
route discovery request in most cases. When
the data packet routed by the source reaches
the black node, it drops the packets rather
than forwarding to the destination as it does
not have a valid route to it. Black hole attack
can be co-operative involving multiple
nodes, where black nodes are acting in
coordination with each other.

2. Replay attack or attack by replaying old
routing information.

Proceedings of the International Conference on Networking, International Conference on Systems and
International Conference on Mobile Communications and Learning Technologies (ICNICONSMCL’06)
0-7695-2552-0/06 $20.00 © 2006 IEEE

3. Lack of error messages, although an error
has been observed.

3. AODV

AODV algorithm works in two phases: Path
discovery and Path maintenance. For path discovery
the algorithm uses Route Requests (RREQs) and
Route Replies (RREPs) messages. For path
maintenance the algorithm uses Route Errors
(RERRs) and HELLO messages. When a node wants
to communicate with another node it looks for a route
in its table. If a valid entry is found for the destination
it uses that path else the node broadcasts the RREQ to
its neighbors to locate the destination. Neighbors
again broadcast RREQ to their neighbors. A reverse
path for the source is created at every node. This
process continues until either the destination or an
intermediate node with a fresh route to the destination
is located.

The node, then builds an RREP packet and sends
to the node from which it received RREQ packet. At
each intermediate node on the reverse route the RREP
packet is inspected and a forward path to the
destination is constructed or updated. Path discovery
completes when RREP reaches to the originator.

For path maintenance, each node periodically
broadcasts a HELLO message to its neighbors and, if
a node has moved out, it informs other nodes by
RERR message.

4. RAODV

AODV has been extended to RAODV by adding
two types of control packets: Reliable Route
Discovery Unit (RRDU) and RRDU Reply
(RRDU_REP). RRDU messages are control packets
sent by the source node along with RRDU-ID, to the
destination at regular intervals and RRDU_REP
message is the response of RRDU by the destination
to the source node. RRDU_REP can only be
generated by the destination. We assume here that
there is no impersonation i.e. no node other than the
destination, can generate RRDU_REP on behalf of
the destination.

We also add a field Reliability List (RL) in the
routing table entry. An entry in the RL has Source
address, a field called Forward Data Packet Count
(FDPC) and RRDU-ID, i.e. the triplet (Source
address, FDPC, RRDU-ID).

The format of RAODV Routing Table entry is
same as that of AODV except for the additional RL
field. As in AODV, RAODV uses RREQ, RREP
messages for route discovery and RERR, HELLO
messages for route maintenance. In addition,

RAODV also uses RRDU and RRDU_REP to help
discover the path and for reliability maintenance.

TABLE I. RAODV ROUTING TABLE ENTRY

D
es

tin
at

io
n

(I
P

A
dd

re
ss

 ,
Se

qu
en

ce

N
um

be
r

)

H
op

 c
ou

nt

N
ex

t H
op

V
al

id

Se
qu

en
ce

 #

Pr
ec

ur
so

r

Li
fe

 T
im

e

R
L

Path discovery in RAODV can be thought of as
consisting of two phases. Phase I is same as that in
AODV. That is, when a node wishes to communicate
with another node it looks for a route in its table. If a
valid entry is found for the destination it uses that
path else the node broadcasts the RREQ to its
neighbors to locate the destination. Neighbors again
broadcast RREQ to their neighbors. The process
continues until either the destination or an
intermediate node with a fresh route to the destination
is located. At each intermediate node, a reverse path
is created for the source. It must be noted that several
reverse paths may be created in this process. The
source receives RREPs from all these paths. In
AODV, it selects the one with minimum hop count
and others are discarded. However, in RAODV, at
this point Phase II starts.

In Phase II the source node sends an RRDU packet
to all the nodes from which it gets the RREPs. Now
since replies to RRDU, i.e. RRDU_REP packets are
generated only by the destination and there is no
impersonation, the source node will receive a unique
RRDU_REP and the path discovery is completed.
Here note that if there was a malicious node on any of
those paths discovered by RREPs then that path
would be isolated as there will be no RRDU_REP
from that path. Once a path free of malicious node
has been discovered, RRDUs are sent periodically to
maintain the reliability of the path, i.e. to detect if any
misbehaving node has crept into the path. RRDU-ID
is incremented every time a new RRDU packet is sent
by the source.

To maintain the reliability of the path we have
introduced the field FDPC in the routing table as well
as in the RRDU_REP packet. FDPC in the routing
table keeps a count of the number of data packets
forwarded by the node. This FDPC is copied by the
node, on return, in the RRDU_REP packet to tell its
previous neighbor as to how many data packets it has
forwarded. The neighbor uses this FDPC to detect
whether the node has forwarded all its packets or not.
In case not, it detects that the node is selfish. Since
selfish node does not intend to disrupt the functioning
of the system, it does not lie. First time RRDU is sent
only to discover the path and FDPC in RRDU_REP
has no significance so it is set to zero by all the
nodes. Once a path has been discovered RRDUs are

Proceedings of the International Conference on Networking, International Conference on Systems and
International Conference on Mobile Communications and Learning Technologies (ICNICONSMCL’06)
0-7695-2552-0/06 $20.00 © 2006 IEEE

sent periodically and FDPC field is used to discover
if any selfish node has crept into the discovered path.
In case a selfish node is detected on the discovered
path, a fresh route discovery is initiated.

4.1. Route Discovery – Phase I

When a source node desires to send a message to
some destination node and does not already have a
valid route to the destination, it initiates a path
discovery process.

TABLE II. RREQ MESSAGE FORMAT

T
yp

e

H
op

 C
ou

nt

R
R

E
Q

 ID

D
es

tin
at

io
n

IP
 A

dd
re

ss

D
es

tin
at

io
n

Se
qu

en
ce

 #

O
ri

gi
na

to
r

IP
 A

dd
re

ss

O
ri

gi
na

to
r

Se
qu

en
ce

 #

The format of RREQ is same as that in AODV.
Each node maintains its own sequence number as well
as RREQ ID. The RREQ ID is incremented for every
RREQ the node initiates. When an intermediate node
receives an RREQ it does the following steps:

1. If it has a fresh route to the destination then it
replies to the source with RREP else it
broadcasts (forwards) the RREQ to its
neighbors with hop count incremented by 1. If
additional copy of the same RREQ is later
received, these packets are discarded.

2. Sets up a reverse path for the reply message.
(a) If it has an entry in its routing table for the

source as the destination but it is not fresh
enough it refreshes it. If there is an entry
for the destination in RL, delete it.

(b) If there is no entry for the source in the
routing table it creates a new entry to the
source node by copying the hop-count,
source sequence number from the RREQ
packet and address of neighbor from which
first copy of the broadcast packet is
received, as the next hop.

3. In either case, append an entry (destination,
0,0) in RL with IP address of destination
copied from the destination field of the RREQ
packet and FDPC, RRDU-ID set to zero.

TABLE III. RREP MESSAGE FORMAT

T
yp

e

H
op

 C
ou

nt

D
es

tin
at

io
n

IP
 a

dd
re

ss

D
es

tin
at

io
n

Se
qu

en
ce

 #

O
ri

gi
na

to
r

IP
 A

dd
re

ss

L
ife

 T
im

e

When the destination receives RREQ packet it
sends back RREP using the reverse path. RREP may

also be sent by an intermediate node having a fresh
route to the destination. The format of RREP is same
as that of AODV. On reverse path, each node
receiving the RREP message does the following steps:

1. If it has an entry in its routing table for the
destination but it is not fresh enough it
refreshes it. Else, if it doesn’t have an entry for
the destination creates a new entry for the
destination.

2. In either case, append an entry (source, 0,0)
with IP address of source copied from the
originator field of the RREP packet and
FDPC, RRDU-ID set to zero.

3. Forwards it to the next hop on the reverse path.

In AODV, the path discovery is completed when
the originator receives the RREP. Now, if I is a
‘malicious node’ then it may send RREP without
having a route to the destination declaring that it has a
fresh route to the destination and sets up a wrong path
from the source to the destination through itself. Refer
to Figure 1. In AODV, if B receives the first RREP
from I, it will keep the path through I and discards
others if the hop count of others is more. Hence s will
have the wrong information. It will have an entry for
the destination d with hop count three and next hop B.
At this point, AODV has selected the path through I
and the path discovery is completed. In RAODV, Path
Discovery is completed only after sending RRDU
packets and receiving RRDU_REP packets as
explained below.

4.2. Route Discovery Phase-II
Once the source node receives RREPs, it sends an

RRDU packet to all the nodes from which it gets the
RREPs. The format of RRDU message packet is as
follows

TABLE IV. RRDU MESSAGE FORMAT

T
yp

e

R
R

D
U

-I
D

So
ur

ce
 IP

ad

dr
es

s

So
ur

ce

Se
qu

en
ce

 #

D
es

tin
at

io
n

IP

D
es

tin
at

io
n

Se
qu

en
ce

 #

H
op

 c
ou

nt

Proceedings of the International Conference on Networking, International Conference on Systems and
International Conference on Mobile Communications and Learning Technologies (ICNICONSMCL’06)
0-7695-2552-0/06 $20.00 © 2006 IEEE

Let us denote the source node by “s” and the
destination by “d”. Every node receiving RRDU does
the following steps:

1. If there is a reverse path entry for s then it sets
the RRDU-ID by copying it from the RRDU
packet. Else, it creates an entry for s in its
routing table in the same manner as it is done
on seeing RREQ.

2. Forwards it to all the nodes from where it had
received RREPs earlier. For example, in Figure
1, B sends RRDU to F, I, C and E.

3. Each node on the path of RRDU must be
having a table entry for the destination. Denote
this entry by Ed. The node sets RRDU-ID in the
RL entry for s in Ed. If additional copy of the
same RRDU is later received, these packets are
discarded. Note that it is possible for a node to
receive multiple RRDUs.

When the destination receives the RRDU packet.
It replies with RRDU_REP to the neighbor from
which it received the first RRDU packet and
discards others. The format of RRDU_REP is as
follows

TABLE V. RRDU_REP MESSAGE FORMAT

Ty
pe

So
ur

ce

IP

ad
dr

es
s

D
es

tin
at

io
n

Se
qu

en
ce

 #

D
es

tin
at

io
n

IP
 A

dd
re

ss

FD
PC

R
el

ia
bi

lit
y

Fl
ag

The destination sets the reliability flag in the
RRDU_REP packet to 1. Note that on the reverse
path, each intermediate node receives only one copy
of RRDU_REP. Each intermediate node receiving the
RRDU_REP message for the first time (RRDU-ID =
1) does two steps: sets FDPC in RRDU_REP to zero
and forwards it to the next hop on the reverse path.
Eventually, the source node gets RRDU_REP. Since
no intermediate node can generate RRDU_REP, this
RRDU_REP is unique and the path is discovered.

Now suppose that there is a malicious node I as
shown in Figure 1, then it may send RREP without
having a route to the destination. Also as it does not
have to check its routing table it is the first one to
respond to route discovery request i.e. it sends an
RREP with wrong information declaring that it has a
fresh route to the destination. We send RRDU on this
path. However, since no node other than the
destination can generate a reply to RRDU therefore B
does not receive RRDU_REP from I. Also, B will
receive RREP from C, E and F. It will send RRDU to
all of them, and receive RRDU_REP from one of
them, and a reliable path, which is free from a
malicious node, is discovered.

Next, the source node starts sending the data
packets on the discovered path. For every data packet
forwarded by a node, FDPC in RL entry for d in Es is

incremented. As mentioned earlier, to maintain
reliability, RRDU packets are sent periodically. Next
time when the RRDU packet is sent and its reply
received, each node sets the FDPC to the number of
data packets it forwarded earlier.

Now, suppose that the path discovered in Figure 1,
is s-B-C-C1-C2-C3-d and let, that a node on this path
becomes selfish say C1. Let C1 be a selfish node of
Type 1. So all nodes other than C1 forward the data
packets that they receive. Suppose s sends n data
packets to d before sending next RRDU. Then B and
C forward all the n data packets to the successor. Let
C1 forwards only p out of them. Then C2, C3 forward p
packets and the destination receives only p packets.
After some time, s sends another RRDU and d sends
back its acknowledgement RRDU_REP. This time
FDPC is set to p by the destination and at every node x
on the reverse path from the destination to the source,
FDPC in RRDU_REP is set to the number of data
packets forwarded by x on the forward path (copied
from the entry for d in Es). Hence, C3, C2, and C1 set
FDPC to p and C and B set the FDPC in RRDU_REP
packet to n. When C sees that it had forwarded n
packets to C1 but C1 forwarded only p (<n) out of
them it knows that C1 is selfish and it sets the
Reliability Flag in the RRDU_REP packet to 0. When
the source receives this RRDU_REP packet with RF
set to zero it knows that something is wrong on this
path and it initiates a fresh route discovery. This time
C ignores C1 in broadcasting the RREQ packet to its
neighbors. The previous set of data packets are sent
again.

In case C1 is a selfish node of Type 2. It does not
forward control packets. Hence, it does not forward
RREQ initiated by s for route discovery and path
between s and d is not established through C1.

When C1 is a selfish node of Type 3 then at first its
energy falls in (E, T1) and node behaves properly. It
forwards both data packets as well as control packets.
After sometime energy falls below T1 in the interval
(T1, T2), the node behaves like Type 1 and is handled
similarly by initiating a fresh route discovery avoiding
C1. Next, we have two scenarios. One, C1 recharges
after sometime and second, its energy level falls
below T2. In the second case, we don’t have to do
anything since we have already discovered a path
ignoring C!. However, in the first case, we would like
to send our data packets again through C1 as path
through C1 is a shorter path. Since C1 recharges after a
fixed interval of time, say T, we will send fresh
RREQs after T time, this time through C1 to let C1
also participate in packet forwarding. The entire
process is repeated with RRDU_ID reset to 1.

4.3. Route Maintenance

As in AODV, RAODV also broadcasts periodically
HELLO messages to its neighbors. Besides Hello
Packets, we also send RRDUs periodically to check if

Proceedings of the International Conference on Networking, International Conference on Systems and
International Conference on Mobile Communications and Learning Technologies (ICNICONSMCL’06)
0-7695-2552-0/06 $20.00 © 2006 IEEE

any intruder has come in the discovered path or any
node has changed to selfish.

5. PEFORMANCE COMPARISON OF
AODV and RAODV

RAODV behaves as AODV in the absence of attack
by malicious node. If there is no malicious or selfish
node present in the network, the source will get one or
more RREPs. It will choose a path for sending data
packets as that of AODV. In case, a malicious or a
selfish node is present in the system, AODV fails. On
the other hand, RAODV will find an alternate path
after a loss of few data packets. The lost packets are
retransmitted. Hence RAODV outperforms AODV in
presence of attack. After some time if some reliable
node comes in place of the malicious node and there is
some shortest path to destination through it, the path
through this node is included for all future
communication when fresh RREQs are sent. Hence
RAODV recovers from the attack and start behaving
like AODV.

6. CONCLUSION

In this paper we have suggested a protocol based on
AODV protocol to prevent attacks by malicious nodes
and selfish nodes. Here we handle malicious nodes,
which are either black nodes i.e. they advertise short
route to the destination through themselves without
even having a route to the destination or attack by
replaying old routing information and lack of error
messages. This protocol is simple to implement,
without any special hardware requirement. We have
made an assumption that a node cannot impersonate.
Since several methods have been proposed to take
care of impersonation, this assumption is not
impractical. Many previous routing protocols also
have considered the attacks by misbehaving nodes.
Some handle malicious nodes but not selfish nodes
and some handle selfish nodes but malicious nodes not
so nicely. The RAODV protocol provides a
foundation for secure operation with little impact on
existing protocols of an ad hoc network and can be
used in bandwidth constrained nodes. RAODV
actually outperforms AODV in terms of secure path
discovery, although it does create more overheads in
terms of computation power by maintaining
Reliability List. Our protocol does not handle the case
in which malicious node changes some fields in
control packets, in particular the destination address.

We are working to implement the RAODV in
Network Simulator and results are expected soon. In
future, we plan to extend RAODV so that malicious
node cannot modify the fields in the control packets.

7. References

[1] Ram Ramanathan and Jason Redi, “A brief
overview of Ad-hoc Networks: Challenges and
Directions”, IEEE Communications Magazine
May 2002, pp. 20-22.

[2] Charles E. Perkins and Pravin Bhagwat, “Highly
Dynamic Destination-Sequenced Distance-
Vector Routing (DSDV) for Mobile Computers”,
Proceedings of the SIGCOMM ’94 Conference
on Communications Architectures, Protocols and
Applications, August 1994, pp. 234–244.

[3] Charles E. Perkins, Elizabeth M. Belding Royer
and Samir R. Das, “Ad-hoc On-Demand
Distance Vector (AODV) Routing”, Mobile Ad-
hoc Networking Working Group, Internet Draft,
February 2003

[4] Yih-Chun Hu, David B. Johnson, and Adrian
Perrig, “SEAD: Secure Efficient Distance Vector
Routing for Mobile Wireless Ad hoc Networks”,
Proceedings of the 4th IEEE Workshop on
Mobile Computing Systems & Applications
(WMCSA 2002), IEEE, Calicoon, NY

[5] Seung Yi, Prasad Naldurg, Robin Kravets, “A
Security-Aware Routing Protocol for Wireless
Ad Hoc Networks”, Proceedings of 6th World
Multi-Conference on Systemics, Cybernetics and
Informatics (SCI), Orlando, FL, July 2002, pp.
286-292

[6] Levente Butty´an and Jean-Pierre Hubaux.
“Enforcing Service Availability in Mobile Ad-
Hoc WANs”, Proceedings of IEEE/ACM
Workshop on Mobile Ad Hoc Networking and
Computing (MobiHOC), Boston, MA, USA,
August 2000.

[7] Pietro Michiardi and Refik Molva, “CORE: A
Collaborative Reputation Mechanism to enforce
node cooperation in Mobile Ad hoc Networks”,
Sixth IFIP conference on security
communications, and multimedia (CMS 2002),
Portoroz, Slovenia., 2002.

[8] S. Buchegger and J.-Y. Le Boudec,
“Performance analysis of the CONFIDANT
protocol (cooperation of nodes: Fairness in
dynamic ad-hoc networks)”, Proceedings of The
Third ACM International Symposium on Mobile
Ad Hoc Networking and Computing, 9-11 June,
2002, Lausanne, Switzerland, ACM Press, 2002,
pp. 226–236.

[9] P. Michiardi and R.Molva, “Simulation based
Analysis of Security Exposures in Mobile Ad
Hoc Networks”, European Wireless 2002
Conference, 2002.

Proceedings of the International Conference on Networking, International Conference on Systems and
International Conference on Mobile Communications and Learning Technologies (ICNICONSMCL’06)
0-7695-2552-0/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

