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Supervised Learning

* [raining by showing examples - no programming
* [weaking the parameters when output is wrong
* Applications (when lot of data)

* Speech Recognition

* Image Classification

* Medical Imaging

* Photo caption

* Jopic Modeling

o Self-driving vehicles
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Deep Learning

* [raditional Machine Learning

 Hand Engineered Features
-> Trainable Classifier

 Deep Learning

e | ow Level Features -> Mid
Level Features -> High Level
Features -> Trainable
classifiers
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https://lawtomated.com/a-i-technical-machine-vs-deep-learning/
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Multi-Layer Neural Networks

Multiple Layers of simple units

Each unit computes a weighted
sum of its inputs

Weighted sum Is passes through
a non-linear function

(ReLU = max(0, x))

The learning algorithm changes
weights

Input layer

\v

J

)‘ LA AL R R R R R NN ) .

O 7 xS
S, O
= g"“’/“:\g:g’z@}x‘a @

(B ¥,
N 2
QEAOOSRY]

'\\'

'7(0;,:‘::;0"‘

)
KO

S

Vit

Hidden layers

5

X XN

A

Output layer
Y

Error backpropagation

https://www.researchgate.net/figure/Architecture-of-multilayer-artificial-neural-network-with-error-backpropagation_fig3_329216193
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Function Optimization

 Stochastic Gradient
Descent

SL(W, X
oW;

 Computing Gradients by
Back-Propogation

— Batch gradient descent
— Mini-batch gradient Descent
— Stochastic gradient descent
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Convolutional Neural Network

28 x 28

Convolution
padding = 1,
kernel = 3x3,
stride = 1
+
RelU

\r/ 64x7x7
32x14x 14 64 x 14 x 14
J2x 28 x 20 Convolution
padding = 1, Max pooling
Max pooling kernel = 3x3, Kernel = 2x2,
Kernel = 2x2, stride = 1 Stride = 2
Stride = 2 *
RelU

https://dev.to/afrozchakure/cnn-in-a-brief-279g
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Transfer Learning using CNN for
Handwritten Devanagari
Character Recognition

Published in IEEE International Conference on Advances in
Information Technology (ICAIT), 2019

https://ieeexplore.ieee.org/document/8987286



Transfer Learning using CNN for Handwritten Devanagari Character

Recognition
Dataset
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Transfer Learning using CNN for Handwritten Devanagari Character

Recognition

Results
Model Valid Accuracy (in |Best Accuracy (in 15 Best Accuracy acheiveed in # | Total Time (15 Average Training Time per

1st epoch) epochs) epochs epochs) Epoch

AlexNet 95 98 3|33m 8s 2.2m
DenseNet 121 /3 89 7|80m 3s 5.3m
DenseNet 201 /4 90 6|113m 22s /.6m
Vgg 11 97 99 8| 86m 6s S./m
Vgg 16 97 08 31132m 12s 8.8m
Vgg 19 96 98 3|148m &57s 9.9m
Inception V3 99 99 1|244m 36s 16.3m
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Detecting Fake News with
Machine Learning

Published in International Conference on Deep Learning, Artificial
Intelligence and Robotics, (ICDLAIR), 2021

https://link.springer.com/chapter/10.1007/978-3-030-67187-7 7



Detecting Fake News with Machine Learning

Dataset and Features

 Kaggle dataset of Fake news
* Real news from Guardian website
* Features - 43
e 39 Parts of Speech Features
* 3 Sentiment Analysis
* Positive Words, Negative Words, Neutral Words

 Unique Words
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Detecting Fake News with Machine Learning
Algorithm

* Ada Boost Classifier

* Decision Trees Classifier

* (Gaussian Naive Bayes (GaussianNB)

» K-Nearest Neighbors (KNeighbors)

o Stochastic Gradient Descent Classifier (SGDC)

e Support Vector Machine
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Detecting Fake News with Machine Learning

Results

 AdaBoost Classifier with base estimator as Decision Tree of maximum depth 3

* Features NN (houn, common, singular or mass); CD (humeral, cardinal); VBP (verb, present tense, not 3rd person singular);
VBG(verb, present participle or gerund); positive (positive sentiment); NNP(noun, proper, singular); JJ(adjective or numeral,
ordinal); IN(preposition or conjunction, subordinating); VBN(verb, past participle); and unique (unique words) were found top
predictive features that provided accuracy of 0.85 and F-score of 0.87

Normalized Weights for First 10 Most Predictive Features
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Neural Machine Translation
model for University Emaill
Application

International Conference on Natural Language Processing
(ICNLP), 2020

https://dl.acm.org/doi/fullHtmi/10.1145/3421515.3421522



Neural Machine Translation model for University Email Application

Dataset and Methodology

* Email communication

* Contextual Paragraph Level Selection
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Neural Machine Translation model for University Email Application

Results

o LSTM with Attention mechanism using Contextual Paragraphs
 English -> Malay: 0.95
 Malay -> English: 0.93
* (Google
 English -> Malay: 0.75
 Malay -> English: 0.735
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Thank you

Dr Nagender Aneja, nagender.anejaQubd.edu.bn
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