Deep Learning

http://researchid.co/naneja

International Conference on Recent Trends in Computing (ICRTC-2021)

Dr Nagender Aneja Universiti Brunei Darussalam nagender.aneja@ubd.edu.bn

Supervised Learning

- Training by showing examples no programming
- Tweaking the parameters when output is wrong
- Applications (when lot of data)
 - Speech Recognition
 - Image Classification
 - Medical Imaging
 - Photo caption
 - Topic Modeling
 - Self-driving vehicles

Deep Learning

- Traditional Machine Learning
 - Hand Engineered Features -> Trainable Classifier

- Deep Learning
 - Low Level Features -> Mid Level Features -> High Level Features -> Trainable classifiers

https://lawtomated.com/a-i-technical-machine-vs-deep-learning/

Multi-Layer Neural Networks

- Multiple Layers of simple units
- Each unit computes a weighted sum of its inputs
- Weighted sum is passes through a non-linear function (ReLU = max(0, x))
- The learning algorithm changes weights

https://www.researchgate.net/figure/Architecture-of-multilayer-artificial-neural-network-with-error-backpropagation_fig3_329216193

Function Optimization

 Stochastic Gradient Descent

•
$$W_i \leftarrow W_i - \alpha \frac{\delta L(W, X)}{\delta W_i}$$

 Computing Gradients by Back-Propogation

- Batch gradient descent
- Mini-batch gradient Descent
- Stochastic gradient descent

Convolutional Neural Network

kernel = 3x3, stride = 1 + RelU

Max pooling Kernel = 2x2, Stride = 2

Kernel = 2x2, Stride = 2

Flatten

https://dev.to/afrozchakure/cnn-in-a-brief-27gg

Transfer Learning using CNN for Handwritten Devanagari Character Recognition Published in IEEE International Conference on Advances in Information Technology (ICAIT), 2019

https://ieeexplore.ieee.org/document/8987286

Transfer Learning using CNN for Handwritten Devanagari Character Recognition Dataset

character_04_gha

character_07_chha

character_05_kna

character_13_daa

Transfer Learning using CNN for Handwritten Devanagari Character Recognition Results

Model	Valid Accuracy (in 1st epoch)	Best Accuracy (in 15 epochs)	Best Accuracy acheiveed in # epochs	Total Time (15 epochs)	Average Training Time per Epoch
AlexNet	95	98	3	33m 8s	2.2m
DenseNet 121	73	89	7	80m 3s	5.3m
DenseNet 201	74	90	6	113m 22s	7.6m
Vgg 11	97	99	8	86m 6s	5.7m
Vgg 16	97	98	3	132m 12s	8.8m
Vgg 19	96	98	3	148m 57s	9.9m
Inception V3	99	99	1	244m 36s	16.3m

Detecting Fake News with Machine Learning Published in International Conference on Deep Learning, Artificial Intelligence and Robotics, (ICDLAIR), 2021

https://link.springer.com/chapter/10.1007/978-3-030-67187-7_7

Detecting Fake News with Machine Learning Dataset and Features

- Kaggle dataset of Fake news
- Real news from Guardian website
- Features 43
 - 39 Parts of Speech Features
 - 3 Sentiment Analysis
 - Positive Words, Negative Words, Neutral Words
 - Unique Words

Detecting Fake News with Machine Learning Algorithm

- Ada Boost Classifier
- **Decision Trees Classifier**
- Gaussian Naive Bayes (GaussianNB)
- K-Nearest Neighbors (KNeighbors)
- Stochastic Gradient Descent Classifier (SGDC)
- Support Vector Machine

Detecting Fake News with Machine Learning Results

- AdaBoost Classifier with base estimator as Decision Tree of maximum depth 3
- predictive features that provided accuracy of 0.85 and F-score of 0.87

• Features NN (noun, common, singular or mass); CD (numeral, cardinal); VBP (verb, present tense, not 3rd person singular); VBG(verb, present participle or gerund); positive (positive sentiment); NNP(noun, proper, singular); JJ(adjective or numeral, ordinal); IN(preposition or conjunction, subordinating); VBN(verb, past participle); and unique (unique words) were found top

Neural Machine Translation model for University Email Application International Conference on Natural Language Processing (ICNLP), 2020

https://dl.acm.org/doi/fullHtml/10.1145/3421515.3421522

Neural Machine Translation model for University Email Application Dataset and Methodology

- Email communication
- Contextual Paragraph Level Selection

(b)

Neural Machine Translation model for University Email Application Results

- LSTM with Attention mechanism using Contextual Paragraphs
 - English -> Malay: 0.95
 - Malay -> English: 0.93
- Google lacksquare
 - English -> Malay: 0.75
 - Malay -> English: 0.735

Thank you

Dr Nagender Aneja, <u>nagender.aneja@ubd.edu.bn</u>