Introduction to adversarial robustness

5 minute read

Published:

This lesson is from Adversarial Robustness - Theory and Practice

Introduction

  • Adversarial robustness
    • Developing classifiers that are robust to perturbations of their inputs
    • by an adversary intent on fooling the classifier
  • Image Classification in PyTorch
    • transform the image to approximately zero-mean and unit variance
    • Perturbation is to be added in the original or unnormalised image

ImageNet

model = torchvision.models.resnet50(pretrained=True)
model.eval()

img = "data/imgs/pig.jpg"
img = PIL.Image.open(img)
img_tensor = utils.preprocess(img).unsqueeze(dim=0)
img_tensor = utils.normalize(img_tensor)

pred = model(img_tensor)
label, name = utils.pred_class(pred)

print(label, name) # 341 hog

Notations

Model or Hypothesis function

  • $ h_\theta : \mathcal{X} \rightarrow \mathbb{R}^k $
  • mapping from input space $3D$ Tensor to output space which is $kD$ Vector
  • $k$ is the number of classes being predicted
  • In this case of ResNet PyTorch, the output is logits so the output may $\pm$ real numbers
  • $\theta$ represents parameters defining the model
    • convolutional filters, fully-connected layer weight metrics, biases etc
      • trained parameters

Loss Function

  • $ \ell: \mathbb{R}^k \times \mathbb{Z}_+ \rightarrow \mathbb{R}+ $

  • mapping from the model predictions and true labels to a non-negative number

  • $\mathbb{R}^k$ - model output i.e. logits and can be $\pm$

  • $\mathbb{Z}_+$ is the index of true class i.e. number from $1$ to $k$

  • Loss the classifier acheives with input $x$ and output $y$
    • $\ell(h_\theta(x), y)$
      • $x \in \mathcal{X}$ as input
      • $y \in \mathbb{Z}$ is true class
  • Cross Entropy Loss (or softmax loss)

    • most common loss

    • \[\ell (h_\theta (x), y) = \log \left ( \sum_{j=1}^k \exp(h_\theta (x)_j) \right ) - h_\theta (x)_y\]
    • where $h_θ(x)_j$ denotes the $j^{th}$ elements of the vector $h_θ(x)$

    • This comes from softmax activation

    • Softmax Operator

      • $\sigma : \mathbb{R}^k \rightarrow \mathbb{R}^k$
        • is a mapping from class logits returned by $h_\theta$ to probability distribution
        • goal of training neural network is to maximize the probability of true class
        • $\sigma(z)i = \frac{exp(z_i)}{\sum{j=1}^{k}\exp(z_{j})}$
    • Since probabilities get vanishingly small, it is common to maximize the log of the probability of true class

      • Now, $h_\theta(x)$ is a logit vector with $y$ as true class
      • Prob Vector is $\sigma(h_\theta(x))$
      • predicted probability for true class is $\sigma(h_\theta(x))_y$
      • $log$ of predicted probability that is to be maximized is
        • \[\log \sigma(h_\theta(x))_y = \log \left(\frac{exp(h_\theta(x)_y)}{\sum_{j=1}^{k}\exp(h_\theta(x)_{j})} \right) = h_\theta(x)_y - \log \left (\sum_{j=1}^{k}\exp(h_\theta(x)_{j}) \right )\]
    • Since the convention is to minimize the loss rather than maximize probability, we use negation of this quantity as our loss function

      • loss = nn.CrossEntropyLoss()(model(img_tensor), target=torch.LongTensor([341]))
        loss = loss.item()
        print(loss) # 0.003882253309711814
        
      • If the loss is small e.g. $0.003$ then it corresponds to $e^{-0.003} \approx 0.996$ probability

Creating Adversarial Example

  • Training Approach
    • is to optimize the parameters $ \theta $ so as to minimize the average loss over training set $ {x_i \in \mathcal{X}, y_i \in \mathbb{Z}} $, $i=1,…,m$
      • Average Loss $ = \frac{1}{m} \sum\limits_{i=1}^m \ell(h_\theta(x_i), y_i) $
    • Thus, Optimization Problem is
      • $ \min\limits_\theta \frac{1}{m} \sum\limits_{i=1}^m \ell(h_\theta(x_i), y_i) $
    • We solve Optimization Problem by (stochastic) gradient descent for some minibatch $\mathcal{B} \subseteq {1,\ldots,m}$
    • We compute gradient of loss with respect to $\theta$ and make small adjustment to $\theta$ in the negative direction
      • Loss Function $ \ell(h_\theta(x_i), y_i) $ for $i \in \mathcal{B}$
      • Gradient of Loss Function is $ \nabla_\theta \ell(h_\theta(x_i), y_i) $ for $i \in \mathcal{B}$
      • Mini Batch
        • $ \frac{1}{\mid \mathcal{B} \mid} \sum\limits_{i \in \mathcal{B}} \nabla_\theta \ell(h_\theta(x_i), y_i) $

        • \[\theta := \theta - \frac{\alpha}{|\mathcal{B}|} \sum\limits_{i \in \mathcal{B}} \nabla_\theta \ell(h_\theta(x_i), y_i)\]
        • where $\alpha$ is step size
    • We repeat the process for different mini-batches covering the entire training set, until the parameters converge.
  • $ \nabla_\theta \ell(h_\theta(x_i), y_i) $

    • Gradient
      • computes how a small adjustment to each of the parameters $\theta$ will affect the loss function
      • Computed by Backpropogation
  • Adversarial

    • Gradient of loss wrt input $x_i$

      • computes as how small changes to the image affect the loss function
    • Image is adjusted to maximize the loss

    • Thus $$ \min\limits_\theta \frac{1}{m} \sum\limits_{i=1}^m \ell(h_\theta(x_i), y_i) \

      becomes \

      \DeclareMathOperator*{\maximize}{maximize} \maximize_{\hat{x}} \ell(h_\theta(\hat{x}), y) $$

    • $\hat{x}$ denotes adversarial example that is maximize the loss
    • In order to make $\hat{x} \sim x$
      • Optimize over the perturbation to $x$, denoted by $\delta$, and optimized over $\delta$
      • $\maximize_\limits{\delta \in \Delta} \ell(h_\theta(x +\delta), y)$
      • where $\Delta$ represents allowable set of perturbations
      • A common perturbation set to use, is the $\ell_\infty$ defined by $ \Delta = {\delta : |\delta|_\infty \leq \epsilon} $
        • $\ell_\infty$ norm of a vector $z$ is defined as
          • $ \norm{z}\infty = \max\limits{i} \mid z_i \mid $
          • e.g. L-infinity norm of vector X= [-6, 4, 2] is 6
model = torchvision.models.resnet50(pretrained=True)
model.eval()

epsilon = 2./255

img = "data/imgs/pig.jpg"
target = 341

img = PIL.Image.open(img)
img_tensor = utils.preprocess(img).unsqueeze(dim=0)
target_tensor = torch.LongTensor([target])

delta_tensor = torch.zeros_like(img_tensor, requires_grad=True) 
opt = optim.SGD([delta_tensor], lr=1e-1) # optimizer on delta

model = torchvision.models.resnet50(pretrained=True)
model.eval();

for t in range(30):
    norm_tensor = utils.normalize(img_tensor + delta_tensor)
    pred = model(norm_tensor)
    
    loss = nn.CrossEntropyLoss()(pred, target_tensor)
    loss = -loss
    
    if t % 5 == 0:
        print(t, loss.item())
        
    opt.zero_grad()
    loss.backward()
    opt.step() # will update delta_tensor
    
    delta_tensor.data.clamp_(-epsilon, epsilon)

# -0.003882253309711814
# -0.006934622768312693
# -0.015804270282387733
# -0.08014067262411118
# -11.92103385925293
# -13.965073585510254
label, name, prob = utils.pred_class(pred)
print(label, name, prob) # 106 wombat 0.999923586845398

prob = nn.Softmax(dim=1)(pred)[0][341].item()
print(prob) # 1.3545100046030711e-06